Case Study of a 20 MW PV Power Plant in El Salvador

Methodology

Techno-Economic Feasibility Study

Methodology

Technical Assessment
- Site Assessment
 - Geotechnical-
 - Environmental-
 - Social-
 - Climatic aspects

- Technology Assessment
 - PV Module Selection
 - Inverter Concepts
 - O&M Requirements

- Permitting process
 - Validation of grid connection
 - Legal Framework Report

Technical Design

Yield Verification

Financial Implications
- Evaluation of CDM Revenues
 - Evaluation revenue and operating expenditures
 - Feed-in tariff analysis
 - Demand analysis

- Assessment capital expenditures
 - Investment costs incl. decommissioning

- Financing Plan and Structure
 - Co-operation with international financing Institutions
Case Study of a 20 MW PV Power Plant in El Salvador
Technical Assessment

- Site Assessment

Objective Site Assessment

• Evaluation of the site suitability based on:

 1. Meteorological data
 2. Terrain usability
 3. Area accessibility
Case Study of a 20 MW PV Power Plant in El Salvador
Technical Assessment

- Irradiation El Salvador
Case Study of a 20 MW PV Power Plant in El Salvador
Technical Assessment

- Site Evaluation

Resulting area 15 de Septiembre

Resulting area Guajoyo
Case Study of a 20 MW PV Power Plant in El Salvador

Technical Assessment

- **Environmental and Social Evaluation**

 Objective

 - Identification of sensitive environmental and social features
 - Consideration of impacts
 - Site preparation
 - Construction
 - Operation
 - De-commissioning
 - Development of mitigation measures

 Result

 - Both sites are feasible for development of a PV plant
Case Study of a 20 MW PV Power Plant in El Salvador
Technical Assessment

Technology Selection

Objective of Technology Assessment

- **Identification** of potential technological solutions

- **Evaluation** of the following technical components:
 1. PV Modules
 2. Mounting Structure and Foundations
 3. Inverter Concept
Case Study of a 20 MW PV Power Plant in El Salvador

Technical Assessment

Module Selection

<table>
<thead>
<tr>
<th>Description</th>
<th>Thin Film Technology</th>
<th>Crystalline Technology</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Amorphous Silicon a-Si</td>
<td>Cadmium Telluride CdTe</td>
</tr>
<tr>
<td>Total Number of Modules / MW</td>
<td>10,020</td>
<td>12,528</td>
</tr>
<tr>
<td>Module Area / MW</td>
<td>14,329 m²</td>
<td>9,020 m²</td>
</tr>
<tr>
<td>Total Area</td>
<td>1.9 ha - 3.1 ha</td>
<td>1.3 ha - 2.2 ha</td>
</tr>
<tr>
<td>Max Power El Salvador / ha</td>
<td>0.5 MW</td>
<td>0.75 MW</td>
</tr>
<tr>
<td>Yield / Year</td>
<td>****</td>
<td>1,528 kWh/kW</td>
</tr>
<tr>
<td>PR</td>
<td>****</td>
<td>79.8 %</td>
</tr>
<tr>
<td>Turnkey Price in Euro per kW</td>
<td>2,300 € - 2,600 €</td>
<td>2,300 € - 2,600 €</td>
</tr>
</tbody>
</table>

Result: Poly-crystalline
Case Study of a 20 MW PV Power Plant in El Salvador
Technical Assessment

Technology Selection

2. Objective Mounting Structure

- Elaboration of cost and time efficient adequate mounting structure
- Identification of geological requirements

Results

- 15 de Septiembre:
 - Pile driven foundations sometimes pre-drilling required
- Guajoyo:
 - Pile driven foundations often pre-drilling required
Case Study of a 20 MW PV Power Plant in El Salvador
Technical Assessment

- **Technology Selection**

 3. **Objective Inverter Concept**

 • **Elaboration** of adequate inverter technology based on availability of maintenance and cost-efficiency

 • **Identification** of costs and service availability

- **Results**

 String inverter concept

 → No on-site maintenance services required

 → Maintenance for central inverter concept are not available in El Salvador

 → Less operation costs
Case Study of a 20 MW PV Power Plant in El Salvador
Technical Assessment

- **Operation & Maintenance**

 Status Operation & Maintenance

 - Extremely low O&M
 - No rotating equipment

 Results

 ➔ O&M Concept

 - 24 h security service
 - Cleaning of modules
 - Maintenance main components
 - Maintenance low and medium voltage system
 - Visual inspection
Case Study of a 20 MW PV Power Plant in El Salvador
Technical Assessment

Permitting Process

<table>
<thead>
<tr>
<th>Results of Legal Framework</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Permits and Authorizations</td>
</tr>
<tr>
<td>– Environmental Permit Process</td>
</tr>
<tr>
<td>– City Hall Permit</td>
</tr>
<tr>
<td>– Working Establishment regulation</td>
</tr>
<tr>
<td>{ Dialogue with Authorities</td>
</tr>
<tr>
<td>• Connection to Grid</td>
</tr>
<tr>
<td>• Contract and Pricing</td>
</tr>
<tr>
<td>• Tax Benefits</td>
</tr>
</tbody>
</table>
Case Study of a 20 MW PV Power Plant in El Salvador

Financial Implications

- Financial Analysis:
 - Irradiation/Net Generation
 - CAPEX/Investment
 - OPEX
 - Electricity Tariff
 - CER Certificates
 - Start of operation
 - Operation period/Project Lifetime
 - Financing/Funding Structure
 - Expansion Plan

- Financial Analysis:
 - Financial Rate of Return
 - Levelized Electricity Cost
 - Debt Service Coverage Ratio
 - Net Present Value
 - Avoided Emissions
Financial Analysis:

- **Irradiation/ Net Generation:** 9,878 MWh/a
- **CAPEX/ Investment:** 17,950 TEUR
- **OPEX:** 205,870 TEUR/a
- **Cost-based vs. Market regulated Tariff**
- **CER Certificates:** 12 EUR/t
- **Start of operation:** 2012
- **Operation period:** 25 years
- **KfW Funding/ CEL Equity**
- **Potential Ext. Steps**

Financial Implications

- **FIRR:** 7.36%
- **LEC:** 0.13 EUR/KWh
- **DSCR:** 1.60
- **NPV:** 13,836.01 TEUR
- **Avoided Emissions:** 158,494 t
Cost Estimation

15 de Septiembre

<table>
<thead>
<tr>
<th>Description</th>
<th>Initial 6.1 MW</th>
<th>Extension 8.1 MW</th>
<th>Guajoyo 3.6 MW</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modules</td>
<td>8,612.68</td>
<td>11,485.24</td>
<td>5,169.11</td>
</tr>
<tr>
<td>Inverter</td>
<td>1,375.00</td>
<td>1,825.00</td>
<td>822.50</td>
</tr>
<tr>
<td>Civil material and construction</td>
<td>760.00</td>
<td>207.00</td>
<td>459.75</td>
</tr>
<tr>
<td>Electrical Material</td>
<td>3,894.80</td>
<td>4,832.90</td>
<td>2,394.13</td>
</tr>
<tr>
<td>Grid connection</td>
<td>717.50</td>
<td>-</td>
<td>567.50</td>
</tr>
<tr>
<td>Engineering, tendering, site supervision</td>
<td>840.00</td>
<td>655.00</td>
<td>460.00</td>
</tr>
<tr>
<td>Insurances</td>
<td>81.00</td>
<td>95.03</td>
<td>49.36</td>
</tr>
<tr>
<td>Contingencies</td>
<td>1,628.10</td>
<td>1,910.02</td>
<td>992.24</td>
</tr>
</tbody>
</table>

Specific Investment Costs (EUR/kW)

- **15 de Septiembre**: 2,522 (3,556 USD)
- **Extension**: 2,340 (3,299 USD)
- **Guajoyo**: 2,701 (3,808 USD)
Case Study of a 20 MW PV Power Plant in El Salvador

Conclusions

Recommendations

- Communication of PV Technology
 - Presentation Workshop with Local Authorities
 - Project Visualization
- Sourcing Strategy
 - Local Content -> Assessment of Local Capacities
 - Knowledge Transfer -> Training
 - Technology Selection -> Consideration of Local Skills
 - Make projects attractive to int. EPCs
- Reliable Tariff System for RE must be established for project lifecycle
Case Study of a 20 MW PV Power Plant in El Salvador
Visualization
Case Study of a 20 MW PV Power Plant in El Salvador

Thank you for your attention!