

Smart Mobility and New Energy

17 Apr 2024

Christopher LUK Head, Intelligent Systems

Automotive Platforms and Application Systems (APAS) R&D Centre

About APAS...

Since	2006
Established by	Innovation and Technology Commission (ITC)
Hosted by	Hong Kong Productivity Council (HKPC)

Completed Projects

150+

ATEN

Patent Granted

APAS' Technology Roadmap - Mobility

Mobility - 2nd Generation Robotaxi

- Dedicated designation for right hand autonomous driving vehicle
- Drive-by-Wire System in compliance with ISO26262 Functional Safety Standard
 - Steer-by-Wire
 - Break-by-Wire
 - Accelerate-by-Wire
 - Lighting-by-Wire
- 5G C-V2X Compatible
- HK local customised autonomous driving HD Map
- Autonomous Vehicle-in-Loop simulation platform
- Robotaxi-hailing apps and cloud server management programs

Mobility - Roadside LiDAR and V2X Technologies

- Autonomous driving
 - Realise real-time traffic information collection
 - Active objects identification and safety control to improve the safety
- Manual driving
 - Improve safety through sending safety warnings by V2X system

Roadside Lidar with bird view perception for activity safety control

Mobility - Thermal Imaging and sensor fusion for AV

Major Benefits

- Living object detection and recognition in low light or foggy weather
- Save time and cost autonomous vehicle safety testing and algorithm development

Application Area

- Living object detection and recognition in low light or foggy weather
- Autonomous driving perception capability enhancement
- Patrol and safety inspection in the night/low-light environment

Count: 3

People counting without privacy concern

Count:

Count: 2

7

Mobility - High-Definition 3D Map Construction

Vehicle based sensor scanning system

3D Mesh Model of the traffic environment

Navigation Data Info

<section-header><section-header>

Mobility - Autonomous Vehicles Simulation

Scenario Creation

- Construct section of Nathan Road in HD 3D
- Unique Hong Kong feature of right-hand drive
- Run simulation of pedestrian crossing in path of autonomous vehicle in various weather conditions
- Simulation can evaluate the vehicle path and avoidance system of actual AV in a simulated environment
- Can be used to verify AV software before movement permit is granted

APAS' Technology Roadmap - AI

AI - Red Light Violation Warning System

- Roadside traffic safety monitoring and warning system
- Prediction for red light violation
- Purely image processing
- Low-cost and easy to set up

11

AI - AI Based Car Exhaust Noise Detection

- First of AI vehicle exhaust noise detection in the world
- Combine Audio and Visual AI for detection

Normal Vehicle

Modified Vehicle

Application Area (Audio AI)

- Preventive maintenance for vehicles
- Robotic system abnormality detection

AI - Remote Automatic Parking System

Improve parking efficiency, accuracy, safety and maximise space utilisation

- Precise 3D mapping
- Obstacles detection and avoidance
- Path planning
- Parking lanes detection
- Vehicle localisation

(B) Rear entering S-shaped (parallel) parking

(C) Rear entering L-shaped parking

Copyright @ 2024 APAS All rights reserved

13

AI + Autonomous - Smart Autonomous Electric Transporter

Standard Version

Large Version

Major Benefits

- Full Autonomy for indoor and outdoor operation with High payload and gradeability
- Flexible movement within narrow or confined area
- Trajectory Path Planning
- Obstacle Avoidance

Application Area

- Logistics, Factory, Warehouse and Hospital
- Movement of machinery, medical supplies, or hospital bed within confined area
- Movement across different building within large scale assembly factories

Autonomous Technology

Multi-sensor fusion for environment perception

Auto navigation with AI

AI + Autonomous - Charging Robot

Autonomous mobile platform with battery package and robot arm to charge the EV automatically

Parameters	Requirements
Mobile Platform Autonomous Driving	Automatic navigation, auto obstacle avoidance
Mobile Platform Charging	Manual/Auto-charging
Moving Direction	Forward / Reverse / Turning
Communication Protocol	TCP/IP, Modbus
Positioning & Navigation Method	Laser scanning and SLAM based
Safety Device	Emergency button / Laser collision detection
Charging Interface	IEC Type 2
Autonomous Mobile Platform Payload	120-150kg
Moving Speed	0~1m/s
Energy Storage Capability	17kWh
Robot Arm Operation Accuracy	+/- 1mm
Size	Approx. 500 (W) x 700 (D) x 1200 (H) mm

APAS' Technology Roadmap – New Energy

A PA

5

New Energy – Electric Minibus

300kW Pantograph High Power Charging Station & Pure Electric Minibus

- 6 to 8 times faster than the 50kW charger
- Compliance with CCS OppCharge Protocol
- Solution for busy commercial vehicles operation

GM innovations GREEN MOBILITY

Swappable Battery Pure Electric Minibus

- Low entrance floor
- Battery swap: 7 minutes
- Passengers counting
- Seat-belt monitoring
- Fleet operation center

ΔΡΔ

New Energy – Electric Commercial Vehicles

12-Metre Plug-in Hybrid Electric Coach

- Pure electric driving mode: Zero emission
- 50% fuel saving compared with Diesel
- Capable for continuously operation without recharging (Diesel refill)
- Solution for busy commercial vehicles operation

16-tonnes Pure Electric Truck

- Range: 200km per charge
- Charging: 1 hour battery charging time with 180kW off-board charger
- Gradient: Up to 20% with Localised PMSM and Automatic Transmission gearbox
- Chassis system: Universal design principles across Diverse Applications

Single-deck Pure Electric Bus

- Bus body: Lightweight, made of T6 grade aluminum
- Driving safety: Smart driving system
- Fleet management: Vehicle Data Cloud Network Platform

New Energy - Hydrogen Application

PEM fuel cell technology platform for EV mobile charging system

- Power output: 30kW (Highest known power output fuel cell in Hong Kong)
- Commissioning: Deliver electrical power for EV charging with Hydrogen fuel cell
- Hydrogen refilling: 35MPa high-pressure system

35MPa Hydrogen Filling Station

PEM Fuel Cell Charger

ITE ENGINEERING LIMITED

EVMake

香港氫能經濟發展報告及問卷調查結果 Hong Kong Hydrogen Economy Report and Survey Result

Oct 2023

Background and Objectives

Background

Clear Air Plan for Hong Kong 2035 to reducing carbon emissions and eventually Carbon Neutrality in 2050;

Exploring different types of zero-carbon energy and related technologies;

Hydrogen can play a key role as resilient and sustainable energy;

Disregarding of raw source of Hydrogen, Hong Kong has advantage over other cities that Hydrogen mixture distribution network throughout Hong Kong.

Objectives

Market analysis on current status of Hydrogen production, distribution, applications and impact on related industries in Hong Kong and other economies and countries;

Explore potentials, limitations and recommendation of using Hydrogen in Hong Kong;

Understand awareness, readiness, acceptance, and potential concerns on Hydrogenrelated development among industrial stakeholders.

Methodology of Study

Conduct data research regarding global Hydrogen technologies;

Review recent activities in Hydrogen adoption, potentials and limitations in Hong Kong;

Conduct market survey with local key stakeholders (88 Responses)

- To collect their views and concerns on Hydrogen adoption;
- To find out status of awareness, readiness, acceptance and potential concerns on hydrogen-related development among industrial stakeholders;

Provide recommendations to facilitate the development of Hydrogen economy in Hong Kong.

Key Findings

Potentials in Application of Hydrogen in Hong Kong

- Use Hydrogen in domestic ferries and intermediate-distance ferries;
- Apply Hydrogen combustion as source of energy in power stations;
- Use Hydrogen as fuel for Remote Area Power Systems, e.g. building sites;
- Develop Hydrogen refueling infrastructure from existing Towngas network (3,700km) across Hong Kong.

Key Findings

Limitations in Hong Kong

- Price of Hydrogen remains high compare with fossil fuel. A typical bus will need 20+ kg per fill to sustain reasonable range (300 – 400km);
- High cost of Hydrogen transportation from remote production site;
- Lack of refueling infrastructure and facilities;
- Lack of comprehensive regulations on utilization, transportation and storage of Hydrogen;
- Lack of large-scale use of Hydrogen by Industry Players in Hong Kong
 - V Lack of scale means cost is high;
 - √ Insufficient motivation or incentive to use Hydrogen as fuel.

Christopher LUK

Dr. Louis YU

THANK YOU