

CLT(クロスラミネーテッドティンバー) 工法の耐火性

Dr. Martin Teibinger

Holzforschung Austria (オーストリア木材研究所)

創立: 1948

法的地位: 非営利組織

所在地: Arsenal(ウィーン)

Stetten(下オーストリア州)

活動分野: RID, PIZ, 情報

従業員: 98

売上高 2015: 約740万ユーロ

原材料および 木質系製品

建設工学

木材防腐および バイオエネルギー

<u>丸太材および</u> ひき板

窓

木材防腐

建造物

木造建築物

表装および家具

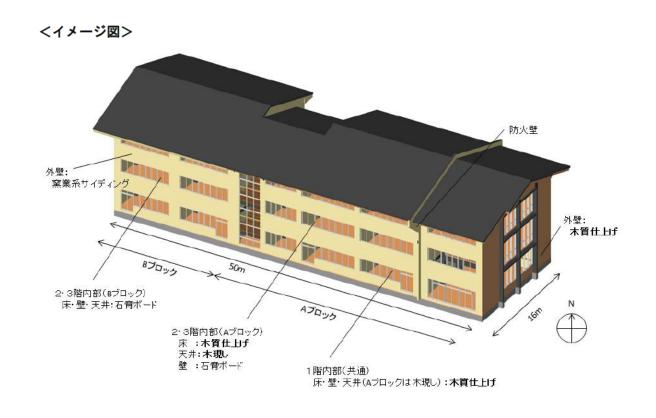
較正研究所

建築物理学

<u>バイオエネルギー</u> および分析化学

伝統技術

伝統技術



3階建て木造校舎の実物大の火災試験

- 木造建築物の耐火性に関する多くの技術
- 木造建築物に関する長い伝統

オーストリアにおける CLT使用のための情報

- 以下のものに基づく
 - 研究プロジェクトおよび 試験の結果
 - 実際の建物の技術
- ガイドラインにおいて 公表

木造建築物の 火災安全性

欧州技術指針

歴史 — オーストリアの高層木造家屋

階層

5-7

4

3

2

ウィーン万国博覧会

1873

Vorarlberg: Ölzbündt, ソーシャルハウジングプログラム Styria

ウィーン: Mühlweg, Spöttelgasse

1990

2004

チャレンジ 1990~2000(2~3階)

- 構造用集成クロス積層パネル (X-Lam)(開発および最初の経験)
- ・プレハブ
- 建築の詳細
- 適切な施工方法による木材保護

歴史 ― オーストリアの高層木造家屋

階層

30

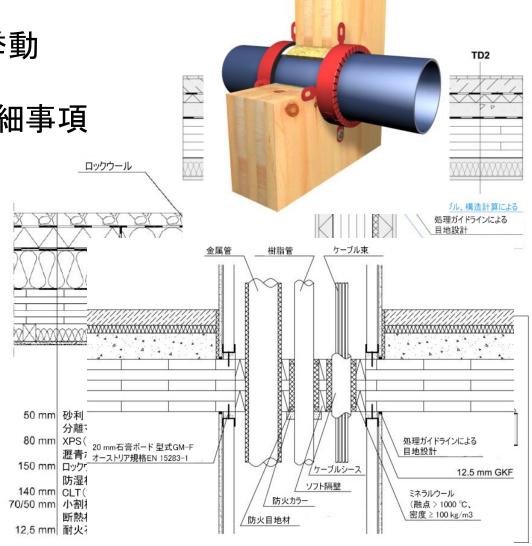
5-7

4

3

ウィーン: Wagramerstraße, LCT Dornbirn

ウィーン: Hoho


2004 2012 2016

チャレンジ(2000~2016)

- 木造ファサードの燃焼挙動
- 接合および結合部の詳細事項
 - 耐火性
 - 防音/側路伝搬音
- サービスダクト
- 高層ビルの防火概念

炭化速度

- ポリウレタン系接着剤の軟化
- 第2層目の炭化層の保護低下

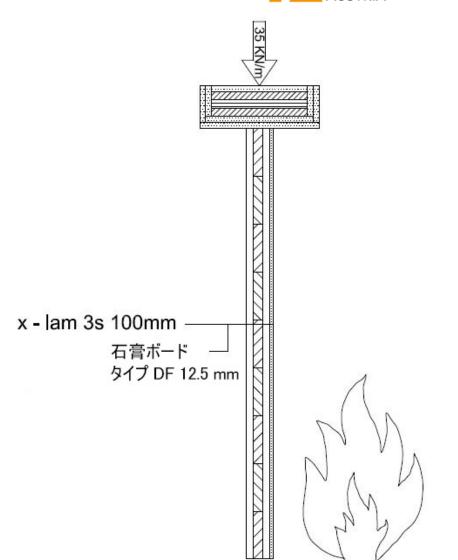
層	コンポーネント	最上層の炭素層の剥離	β ₀ [mm/min]
最上層	壁 天井または屋根		0.65
他の層	天井または屋根	あり	1.3
他の層	天井または屋根	なし	0.8
他の層	壁	あり	0.9
他の層	壁	なし	0.7

CLTの耐火性の例

10 cm x-lam

1.25 cm石こうボード

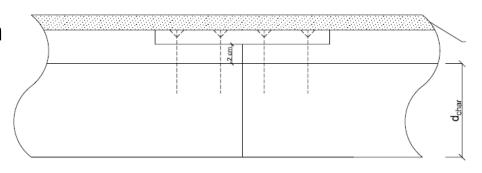
• 耐火性は?

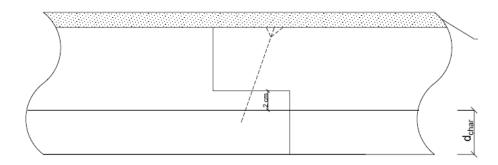

REI 120

• 炭化時間 t_{ch}?

24 分

• 破壊時間 t_f?


55 分



REIの算定

- R:
 - 炭化速度
 - EN 1995-1-2に基づく算定
- EI:
 - 対接合部不燃CLT距離 ≥ 20 mm
 - 一般的にはCLTはEI低下なし!

CLT壁の耐火性例

	CLT	炎にさらされる個所の板張り	REI 30	REI 60	REI 90
		保護されていない表面		REI 60	21
	100;	石こうボード			12.5
	3層 35 kN/m	石こうボード			12.5
	JS KIV/III	断熱材			40
		-			61 -
	最大高さ: :	3 m			

CLTの床の耐火性例

CLT		炎にされされる板張り	REI 30	REI 60	REI 90
	100; 3層 1 kN/m2	保護されていない表面		REI 60	
	150; 5層 5 kN/m2	保護されていない表面		REI 60	
		石こうボード			12.5
		石こうボード			12.5
		断熱材			40
	最大スパン幅:	4 m			

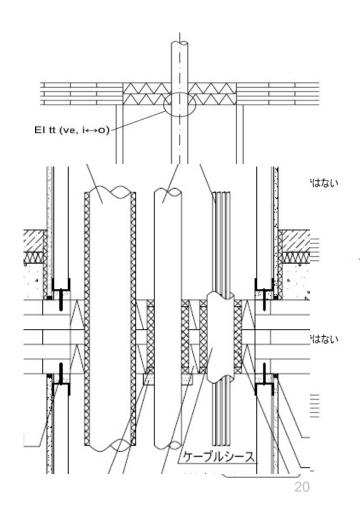
結合部の詳細事項 建築基準

- 二重壁のスペース(≥5 cm)はミネラル ウールで完全にふさがれています。
- 部材のねじ接合は圧入方式で実行する 必要があります。その際、証明なしに 最大50 cmの間隔で十分です。
- 一般的に、制御できない延焼は発生しない

電設資材 建築基準

間仕切り壁 防火区画を形成する壁 電設資材はCLT部材に直接敷設 取付け層が必要です! することができます。

HVACR貫通 建築基準



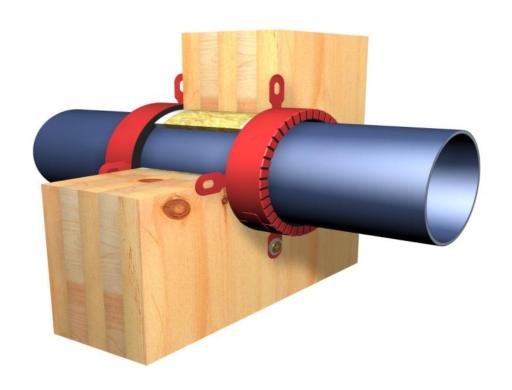
• タイプAのシャフト:

- シャフトの壁およびその貫通は耐火性に 対する要件を満たしている必要があります。
- o シャフト内には可燃性の製品がないこと
- 開口部は不燃性クラッディング施工
- 石こうボードのストリップ、タイプGM-F

■ タイプBのシャフト:

- o シャフトに対する防火要件はない
- 。 水平防火仕切り
 - 耐火塗料されたネラルウール (ロックウール、150 kg/m³)
 - コンクリート
- 可燃パイプ用耐火パイプ環

耐火パイプ環 試験



耐火パイプ環 建築基準

不燃構造に設置する場合と 比べても、防火の効果に 変わりはありません。

結論

- CLT工法は高層建物の耐荷重要素として優れている
- CLTの証明済みの耐火性能
 - 高耐火性
 - 制御できない空洞なし
- 証明済みの詳細なソリューションは公表されている
- CLT工法およびCLT建造物を楽しんでください!

Dr. Martin Teibinger

m.teibinger@holzforschung.at

Tel. +43/1/798 26 23-63

www.holzforschung.at

